Search results for "imprecise probability"
showing 10 items of 10 documents
Coherent conditional probabilities and proper scoring rules
2011
In this paper we study the relationship between the notion of coherence for conditional probability assessments on a family of conditional events and the notion of admissibility with respect to scoring rules. By extending a recent result given in literature for unconditional events, we prove, for any given strictly proper scoring rule s, the equivalence between the coherence of a conditional probability assessment and its admissibility with respect to s. In this paper we focus our analysis on the case of continuous bounded scoring rules. In this context a key role is also played by Bregman divergence and by a related theoretical aspect. Finally, we briefly illustrate a possible way of defin…
Square of Opposition Under Coherence
2016
Various semantics for studying the square of opposition have been proposed recently. So far, only (Gilio et al., 2016) studied a probabilistic version of the square where the sentences were interpreted by (negated) defaults. We extend this work by interpreting sentences by imprecise (set-valued) probability assessments on a sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square in terms of acceptability and show how to construct probabilistic versions of the square of opposition by forming suitable tripartitions. Finally, as an application, we present a new square involving generalized qu…
Probabilistic semantics for categorical syllogisms of Figure II
2018
A coherence-based probability semantics for categorical syllogisms of Figure I, which have transitive structures, has been proposed recently (Gilio, Pfeifer, & Sanfilippo [15]). We extend this work by studying Figure II under coherence. Camestres is an example of a Figure II syllogism: from Every P is M and No S is M infer No S is P. We interpret these sentences by suitable conditional probability assessments. Since the probabilistic inference of \(\bar{P}|S\) from the premise set \(\{M|P,\bar{M}|S\}\) is not informative, we add \(p(S|(S \vee P))>0\) as a probabilistic constraint (i.e., an “existential import assumption”) to obtain probabilistic informativeness. We show how to propagate the…
Coherence Checking and Propagation of Lower Probability Bounds
2003
In this paper we use imprecise probabilities, based on a concept of generalized coherence (g-coherence), for the management of uncertain knowledge and vague information. We face the problem of reducing the computational difficulties in g-coherence checking and propagation of lower conditional probability bounds. We examine a procedure, based on linear systems with a reduced number of unknowns, for the checking of g-coherence. We propose an iterative algorithm to determine the reduced linear systems. Based on the same ideas, we give an algorithm for the propagation of lower probability bounds. We also give some theoretical results that allow, by suitably modifying our algorithms, the g-coher…
Imprecise probability assessments and the Square of Opposition
There is a long history of investigations on the square of opposition spanning over two millenia. A square of opposition represents logical relations among basic sentence types in a diagrammatic way. The basic sentence types, traditionally denoted by A (universal affirmative: ''Every S is P''), E (universal negative: ''No S is P''), I (particular affirmative: ''Some S are P''), and O (particular negative: ''Some S are not P''), constitute the corners of the square, and the logical relations--contradiction, contrarity, subalternation, and sub-contrarity--form the diagonals and the sides of the square. We investigate the square of opposition from a probabilistic point of view. To manage impre…
Transitive Reasoning with Imprecise Probabilities
2015
We study probabilistically informative (weak) versions of transitivity by using suitable definitions of defaults and negated defaults in the setting of coherence and imprecise probabilities. We represent \(\text{ p-consistent }\) sequences of defaults and/or negated defaults by g-coherent imprecise probability assessments on the respective sequences of conditional events. Finally, we present the coherent probability propagation rules for Weak Transitivity and the validity of selected inference patterns by proving p-entailment of the associated knowledge bases.
Transitivity in coherence-based probability logic
2016
We study probabilistically informative (weak) versions of transitivity by using suitable definitions of defaults and negated defaults in the setting of coherence and imprecise probabilities. We represent p-consistent sequences of defaults and/or negated defaults by g-coherent imprecise probability assessments on the respective sequences of conditional events. Moreover, we prove the coherent probability propagation rules for Weak Transitivity and the validity of selected inference patterns by proving p-entailment of the associated knowledge bases. Finally, we apply our results to study selected probabilistic versions of classical categorical syllogisms and construct a new version of the squa…
Consistency of Probability Decision Rules and Its Inference in Probability Decision Table
2012
In most synthesis evaluation systems and decision-making systems, data are represented by objects and attributes of objects with a degree of belief. Formally, these data can be abstracted by the form (objects; attributes; P), wherePrepresents a kind degree of belief between objects and attributes, such that,Pis a basic probability assignment. In the paper, we provide a kind of probability information system to describe these data and then employ rough sets theory to extract probability decision rules. By extension of Dempster-Shafer evidence theory, we can get probabilities of antecedents and conclusion of probability decision rules. Furthermore, we analyze the consistency of probability de…
Probability Propagation in Selected Aristotelian Syllogisms
2019
This paper continues our work on a coherence-based probability semantics for Aristotelian syllogisms (Gilio, Pfeifer, and Sanfilippo, 2016; Pfeifer and Sanfilippo, 2018) by studying Figure III under coherence. We interpret the syllogistic sentence types by suitable conditional probability assessments. Since the probabilistic inference of $P|S$ from the premise set ${P|M, S|M}$ is not informative, we add $p(M|(S ee M))>0$ as a probabilistic constraint (i.e., an ``existential import assumption'') to obtain probabilistic informativeness. We show how to propagate the assigned premise probabilities to the conclusion. Thereby, we give a probabilistic meaning to all syllogisms of Figure~III. We…
Probabilistic squares and hexagons of opposition under coherence
2017
Various semantics for studying the square of opposition and the hexagon of opposition have been proposed recently. We interpret sentences by imprecise (set-valued) probability assessments on a finite sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square and of the hexagon in terms of acceptability. Then, we show how to construct probabilistic versions of the square and of the hexagon of opposition by forming suitable tripartitions of the set of all coherent assessments on a finite sequence of conditional events. Finally, as an application, we present new versions of the square and of the…